

Description

The TN54A Series is a high input voltage, low quiescent current, low-dropout linear regulator able to provide 300mA load current.

The LDO features very fast response against line voltage transient and load current transient, and ensures no overshoot voltage during the LDO start up and short circuit recovery.

The device features integrated short-circuit and thermal shutdown protection.

Features

Low Quiescent Current: 2.1uA

High Input Voltage Rating: Up to 55V

Maximum Output Current: 350mA

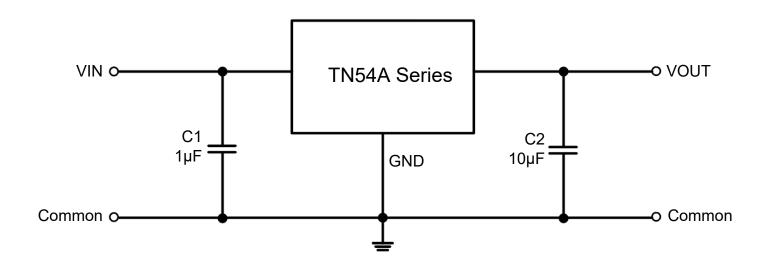
Low Dropout : 350mV @ 100mA

High PSRR: 85dB at 1KHz

Fixed Output Voltages: 1.8V,3V,3.3V,5V

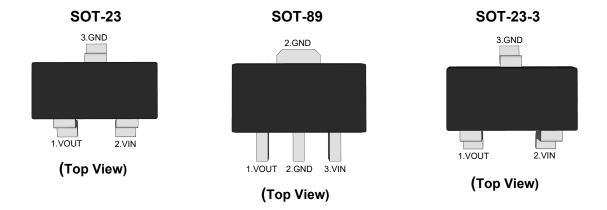
Fast Transient Response

Current Limiting Protection

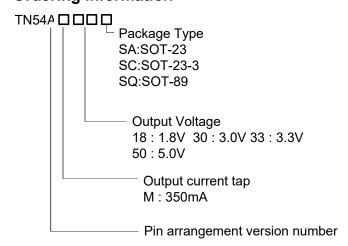

Thermal Shutdown Protection

Available Packages: SOT-23、SOT-23-3、SOT-89

Applications


- Battery-Powered Equipment
- Smoke Detector and Sensor
- Micro Controller Applications

Typical Application Circuit


Pin Distribution

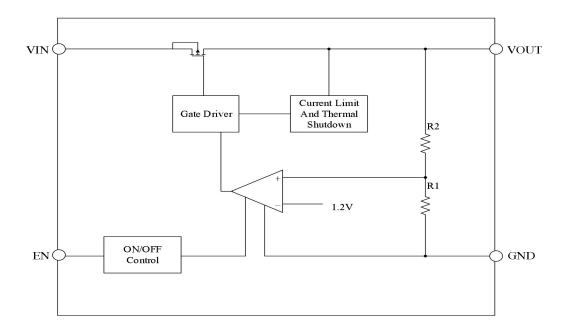
Functional Pin Description

Pin Name	Pin Function	
GND	Ground	
VOUT	Output Voltage	
VIN	Power Input Voltage	

Ordering Information

Ordering Information Continue

Orderable Device	Package	Reel (inch)	Package Qty (PCS)	Eco Plan ^{Note}	MSL Level	Marking Code
TN54AM18SA						
TN54AM30SA	SOT-23	7	3000	RoHS & Green	MSL1	54XXA
TN54AM33SA	SO1-23	1	3000	Rons & Green	IVISLI	XX:Output Voltage
TN54AM50SA						e.g. 30:3.0V
TN54AM18SQ						
TN54AM30SQ	SOT-89	7/13	1000/3000	RoHS & Green	MSL1	54XXA
TN54AM33SQ		7/13				
TN54AM50SQ						XX:Output Voltage e.g. 30:3.0V
TN54AM18SC						
TN54AM30SC	- SOT-23-3	7	7 3000	RoHS & Green	MSL3	54XXCA
TN54AM33SC		1				
TN54AM50SC						XX:Output Voltage e.g. 30:3.0V


Note:

RoHS: TN defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials.

Green: TN defines "Green" to mean Halogen-Free and Antimony-Free.

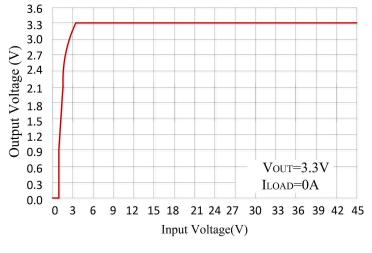
Function Block Diagram

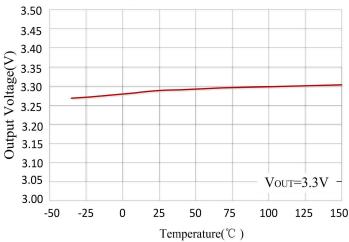
Absolute Maximum Ratings

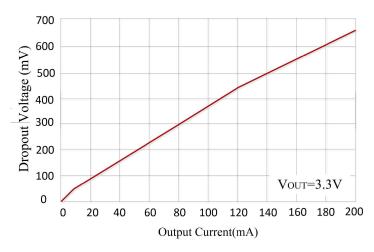
Ratings at 25°C ambient temperature unless otherwise specified.

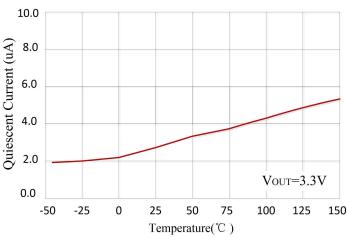
Parameter	Value	Unit	
VIN to GND Voltage	-0.3 ~ +55	V	
VOUT to GND Voltage	-0.3 ~ +6	V	
VOUT to VIN Voltage	-55 ~ +0.3	V	
EN to GND Voltage	-0.3 ~ +55	V	
Output Current	Internally limited		
	SOT-23	300	mW
Power Dissipation	SOT-23-3	400	mW
	SOT-89	600	mW
	SOT-23	380	°C/W
Thermal Resistance,Junction-to-Ambient	SOT-23-3 300		°C/W
	SOT-89 180		°C/W
Operating Ambient Temperature		-40 ~ +85	°C
Junction temperature	150	°C	
Storage temperature range	-40 ~ +150	°C	
ESD(HBM)		4	KV

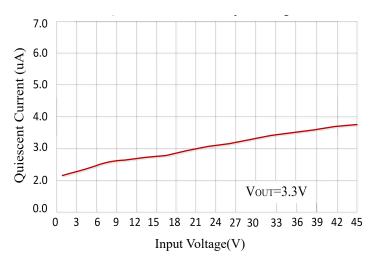
Electrical Characteristics

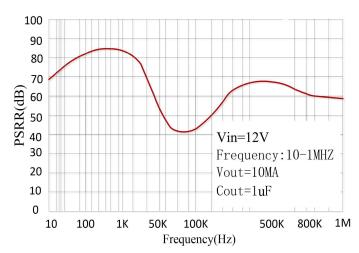

($V_{IN}=V_{OUT}+1$, $C_{IN}=1\mu F$, $C_{OUT}=10\mu F$, $T_A=25^{\circ}C$, unless otherwise noted.)

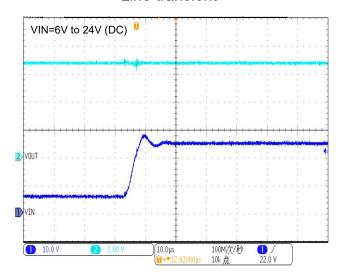

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Input Voltage		V _{IN}		3		45	V	
Output Voltage Accuracy		ΔV_{OUT}	V _{IN} =12V, I _{OUT} =10mA	-2		+2	%	
Quiescent Current		ΙQ	V _{IN} =12V, I _{OUT} =0mA		2.1		μA	
Maximum Output Current		I _{OUT_Max}		300	350		mA	
Dropout Voltage		V _{DROP}	V _{IN} =V _{OUTNOM} -0.1V, I _{OUT} =10mA		35		mV	
			V _{IN} =V _{OUTNOM} -0.1V, I _{OUT} =100mA		350			
Line Regulation		ΔV_LINE	V _{OUTNOM} +0.5V≤V _{IN} ≤40V I _{OUT} =1mA		0.01		%/V	
Load Regulation		ΔV_LOAD	V _{IN} =12V, 1mA <i<sub>OUT<100mA</i<sub>		0.02		%/mA	
Current Limit		I _{LIM}			500		mA	
EN Input Threshold	Logic Low	VIL				0.4	V	
	Logic High	ViH		1			V	
Power Supply Rejection Ratio		PSRR	V _{IN} =12V,I _{OUT} =10mA f=1KHz,V _{OUT} =3.3V		85		dB	
Thermal Shutdown Temperature		T _{SHDN}	Shutdown, Temp increasing		150		°C	
Thermal Reset Temperature		T _{SHDN}	Reset, Temp increasing		140		°C	

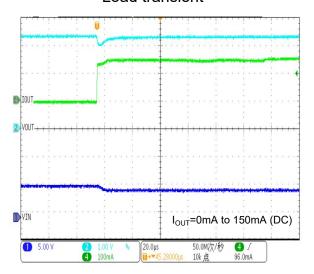



Typical Characteristic Curves

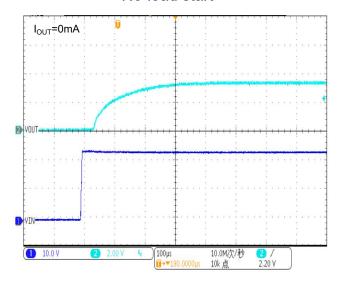

(Test Condition: T_A=25°C,I_{OUT}=1mA, C_{OUT}=10uF, unless otherwise noted.)

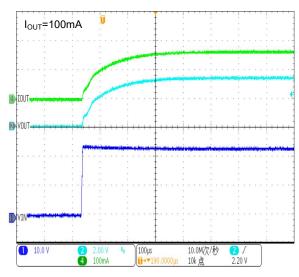


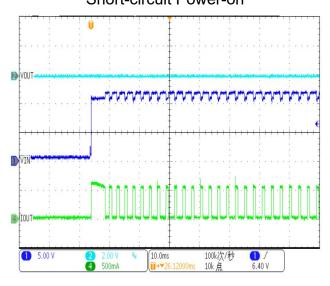


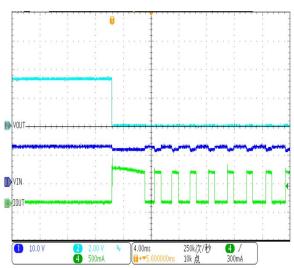


TN54A SeriesLow Dropout Regulators


Line transient


Load transient


No-load start


Start with load

Short-circuit Power-on

Power-on short

Functional Description

Input Capacitor

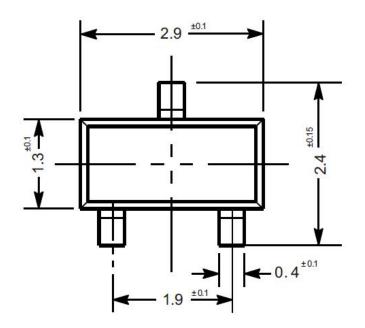
A 1μF ceramic capacitor is recommended to connect between VIN and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both VIN and GND.

Output Capacitor

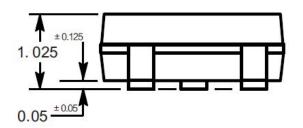
An output capacitor is required for the stability of the LDO. The recommended minimum output capacitance is $10\mu F$, ceramic capacitor is recommended, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to VOUT and GND pins.

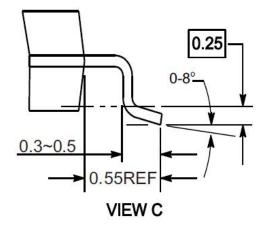
Current Limit and Short Circuit Protection

When output current at VOUT pin is higher than current limit threshold or the VOUT pin is direct short to GND, the current limit protection will be triggered and clamp the output current at a pre-designed level to prevent over-current and thermal damage.

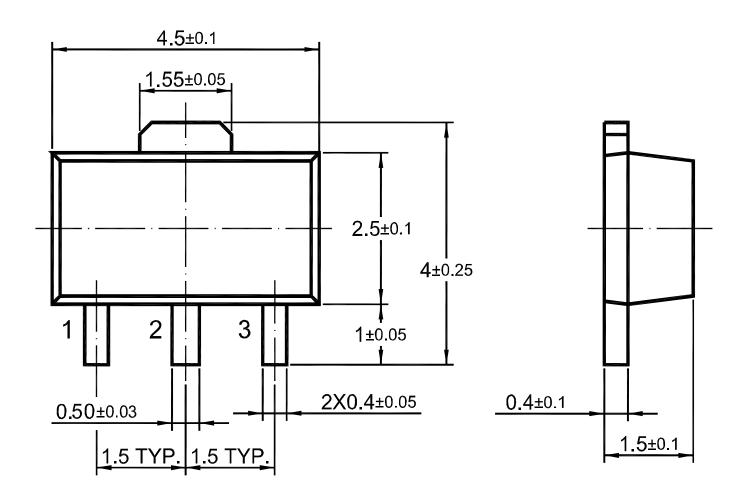

Thermal Protection

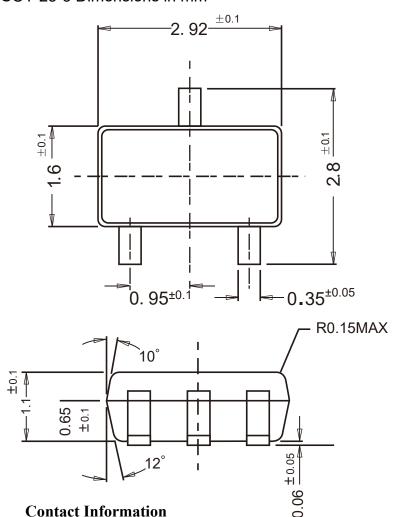
The TN54A Series has internal thermal sense and protection circuits. When excessive power dissipation happens on the device, such as short circuit at the output pin or very heavy load current with a large voltage drop across the device, the internal thermal protection circuit will be triggered, and it will shut down the power MOSFET to prevent the LDO from damage. As soon as excessive thermal condition is removed and the temperature of the device drops down, the thermal protection circuit will lease the control of the power MOSFET, and the LDO device goes to normal operation.

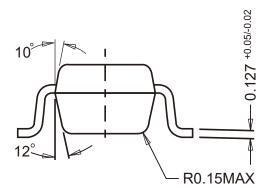



Package Outline

SOT-23 Dimensions in mm




Package Outline


SOT-89 Dimensions in mm

Package Outline

SOT-23-3 Dimensions in mm

For additional information, please contact your local Sales Representative.

® is registered trademarks of TANI Corporation.

Product Specification Statement

The product specification aims to provide users with a reference regarding various product parameters, performance, and usage. It presents certain aspects of the product's performance in graphical form and is intended solely for users to select product and make product comparisons, enabling users to better understand and evaluate the characteristics and advantages of the product. It does not constitute any commitment, warranty, or guarantee.

The product parameters described in the product specification are numerical values, characteristics, and functions obtained through actual testing or theoretical calculations of the product in an independent or ideal state. Due to the complexity of product applications and variations in test conditions and equipment, there may be slight fluctuations in parameter test values. TANI shall not guarantee that the actual performance of the product when installed in the customer's system or equipment will be entirely consistent with the product specification, especially concerning dynamic parameters. It is recommended that users consult with professionals for product selection and system design. Users should also thoroughly validate and assess whether the actual parameters and performance when installed in their respective systems or equipment meet their requirements or expectations. Additionally, users should exercise caution in verifying product compatibility issues, and TANI assumes no responsibility for the application of the product. TANI strives to provide accurate and up -to- date information to the best of our ability. However, due to technical, human, or other reasons, TANI cannot guarantee that the information provided in the product specification is entirely accurate and error-free. TANI shall not be held responsible for any losses or damages resulting from the use or reliance on any information in these product specifications.

TANI reserves the right to revise or update the product specification and the products at any time without prior notice, and the user's continued use of the product specification is considered an acceptance of these revisions and updates. Prior to purchasing and using the product, users should verify the above information with TANI to ensure that the prod uct specification is the most current, effective, and complete. If users are particularly concerned about product parameters, please consult TANI in detail or request relevant product test reports. Any data not explicitly mentioned in the product specification shall be subject to separate agreement.

Users are advised to pay attention to the parameter limit values specified in the product specification and maintain a certain margin in design or application to ensure that the product does not exceed the parameter limit values defined in the product specification. This precaution should be taken to avoid exceeding one or more of the limit values, which may result in permanent irreversible damage to the product, ultimately affecting the quality and reliability of the system or equipment.

The design of the product is intended to meet civilian needs and is not guaranteed for use in harsh environments or precision equipment. It is not recommended for use in systems or equipment such as medical devices, aircraft, nuclear power, and similar systems, where failures in these systems or equipment could reasonably be expected to result in personal injury. TANI shall assume no responsibility for any consequences resulting from such usage.

Users should also comply with relevant laws, regulations, policies, and standards when using the product specification. Users are responsible for the risks and liabilities arising from the use of the product specification and must ensure that it is not used for illegal purposes. Additionally, users should respect the intellectual property rights related to the product specification and refrain from infringing upon any third- party legal rights. TANI shall assume no responsibility for any disputes or controv ersies arising from the above-mentioned issues in any form.